

TROPOTHEN-S

EHV XLPE CABLES

As India marches towards the 21st century, power becomes an essential ingredient for infrastructural development. With rapid urbanisation around the corner to sustain the industrial growth, the necessity of transmitting large blocks of power to load centres assumes significance. Over the years, t here has been marked increase in the voltage level for transmission of bulk power, due to the distinct advantages offered by the use of high voltage. This had ushered in the generation of Extra high voltage (EHV) power transmission systems with voltage grades of 66 kV and above. In this context, long-distance underground cable networks provide an ideal solution in many situations where the safety and logistic consideration s preclude the use of cross-country over head tower lines. Underground EHV cables are also used for evacuating bulk power generated in pumped storage hydroelectric power generating stations, situated at a lower altitude, at outdoor switchyard locate data higher altitude. Similarly, underground cable systems are the appropriate me ans of power transmission over short distance s where erection of overhead tower lines would be infeasible considering the space constraints. The distinct advantages in achieving low transmission losses when such cable system s are operated at higher voltages for bulk power transfer are well-known.

It is in this context that Cross-linked Polyethylene (XLPE) insulated cables offer significant advantages. As an insulating material, XLPE combines the advantages of improved mechanical and thermal properties with excellent electrical characteristic s of high dielectric strength , low relative permittivity and low loss factor . These advantages have rendered what XLPE cable s can achieve today – carrying large currents at voltages upto 220 k V and above, with an inherent higher short circuit withstand capacity of 250_oC. Additional benefits that accrue are simple construction easy installation and trouble free operation.

TYPICAL CONSTRUCTION

EH V XLP E cable s are manufactured generally in accordance with IEC: 502 and IS:7098 (Part-3) standards. The typical constructions and their salient features are as show n below.

Features of Metal Laminate Sheathed Cable

- 1. Impervious to ingress of water.
- 2. Layer is very thin,hence compact cable.
- 3. Lighter in weight.

4. Smaller diameter a s compar ed at metallic sheathed cable.

5. Additional copper wires screen is necessary to carry earth fault current.

6. Larger delivery length and hence less number of joints.

Features of Lead Sheathed Cable

1. Continuous seamless sheathing,hence excellent protection against water penetration.

2. Cables is mechanically strong.

3. Lead sheath can act as metallic part of insulation screens.

4. Additional copper wires screen is not necessary to carry earth fault (short circuit) current except for the cases when earth fault current magnitude is very high.

Features of Aluminium Sheathed Cable

1. Excellent protection against water penetration.

- 2. Cable is light in weight.
- 3. Cable is mechanically stronger.
- 4. Earth fault current carrying capacity of sheath is lighter.

THE MANUFACTURING PROCESS

MDCV Process

The plant has a horizontal layout, as a result of which the conductor as well as the extruded core can remain in a straight line without bending or sagging, thereby permitting stabilised manufacture of large-sized cables. Cross-linking in Long Land control employing dry curing at elevated temperatures, ensures void-free, homogeneous insulation. A very low eccentricity is achieved by this process as the process is horizontal. The pressure is very high in LLD, resulting in void free extrusion.

TESTING AND QUALITY CONTROL

Super Tension XLPE Cable s from CCI are manufactured with stringent in-proces s quality control and u Itimatel y tested to demanding performance requirement s in accordance with the latest international specification like IEC:62840/2004 and Swedish Standard SIS:442417/1988, and our own national specification IS:7098 (Part-.3). Reference test voltages are indicated in table no.1.Our 220 k V cable , the first ever to be made in the country, has satisfactorily run through the tests conducted a t **N V KEMA**, **Netherland** s (an independent testing laboratory a nd a research organisation of international

repute), and has been successfully installed and commissioned at an Electricity board in india

CC I EH V cables 66kV,110kV,220kV grade have been type tested at Centra Power Research Institute (CPRI) with satisfactory results.

CCI has sophisticated laboratories to undertake basic material research and investigation to take care of continuous improvements i n EHV cable construction .To sustain development wor k in the field , the Company has set up ultramodern test facilities which permit long term performance evaluation and reliability test s for EHV cables.

IMPULSE GENERATOR High Voltage and Partial Discharge Equipment

·Capacity : 400 kV ·System : Series Resonance Type ·Features : Double Shielded Room , Facilitates graphic recording o f PD.

Impulse Equipment

Capacity : 2500 kV Impulse Generator Features : Suitable for lightning impulse s 1 .2/5 0 microseconds.

Heat Cycle Equipment

Capacity : 30V, 4000 Amps ,1 0 kV A Current transformer. Features : Can perform Heat Cycle test as per IEC:840 in combination with High Voltage Test.

DC High Voltage Equipment

Capacity : 400 kV DC Generator ·Features : Suitable for after installation tests on cables upto 220 kV.

The Company's electrical laboratory is accredited as a testing laboratory by **NABL** (National Accreditation Board for Testing & Calibration Laboratories), Govt.of India.

To top it all, it has been approved by **Bureau Veritas** that our Quality Management ISO:9001-2008.

Table No. 1 Reference Test voltages for TROPOTHEN-S Cables

Rated	Highest	30 min	Partial	Tan delta	Heating	Impulse	15 min
voltage of	voltage for	voltage	discharge	measurement	cycle test	withstand	powe r
cables	equipment between conductors	test	test			test	frequency voltage tes after impulse test
Uo/U	Um	2.5Uo	1.5Uo	Uo	2 Uo		2.5 Uo
kV	kV	kV	kV	kV	kV	kV	kV
38/66	72.5	90	57	38	76	325	90
64/110	123	160	96	64	128	550	160
76/132	145	190	114	76	152	650	190
127/220*	245	315	190	122	254	1050	315

* Test voltages are generally in line with IEC 840 / IS: 7098 Part 3

Cross- Sectional area of conductor	Max D.C. resis conductor a Centigr	stance of t 20 Deg rade	App. A.C. resistance of conductor at 90 Deg . Centigrade			
mm	Aluminium conductor ohm/km	Copper conductor ohm/km	Aluminium conductor ohm/km	Coppe r conductor ohm/km		
95	0.3200	0.1930	0.4110	0.2460		
120	0.2530	0.1530	0.3250	0.1960		
150	0.2060	0.1240	0.2640	0.1590		
185	0.1640	0.0991	0.2110	0.1270		
240	0.1250	0.0754	0.1610	0.0972		
300	0.1000	0.0601	0.1290	0.0780		
400	0.0778	0.047 0	0.1010	0.0618		
500	0.0605	0.0366	0.0791	0.0491		
630	0.0469	0.0283	0.0622	0.0393		
800	0.0367	0.0221	0.0497	0.0322		
1000	0.0291	0.0176	0.0380	0.0236		
1200	0.0247	0.0151	0.0326	0.0207		
1600	0.0186	0.0113	0.0251	0.0163		
2000	0.0149	0.0090	0.0207	0.0138		

Table No . 2 Conductor Resistance

Table No.3 Conductor Short Circuit Rating

Cross Sectional a of conduct Sq.mm	rea or	Short c ircuit for 1 Sec. Al kA(rms) Cu kA(rms)					
95		8.93	13.58				
120		11.30	17.16				
150		14.10	21.45				
185		17.40	26.45				
240		22.60	34.32				
300		28.20	42.90				
400		37.60	57.20				
500		47.00	71.50				
630		59.20	90.10				
800		75.20	114.40				
1000		94.00	143.00				
1200		112.80	171.60				
1600	A CONTRACTOR	150.40	228.80				
2000		188.00	286.00				

Table No.4 Minimum conductor cross -sections and insulation thickness

Voltage grade kV	Smallest Nominal conductor cross-section	Nominal Thickness of Insulation
	sq mm	mm
38/66	95	11.0
64/110	150	16.0
76/132	185	18.0
127/220	400	27.0

Note: Above values are as per IS:7098 (part 3)

Table NO.	b Capacitance of v			
Cross -		Voltage grade of	fCable	
Sectional area of conductor sqmm	38/66 kV	64/110kV	76/132kV	127/220kV
95	0.150			
120	0.160			
150	0.170	0.135		
185	0.180	0.140	0.130	
240	0.195	0.150	0.140	
300	0.210	0.165	0.150	
400	0.230	0.175	0.165	0.125
500	0.250	0.190	0.175	0.135
630	0.275	0.205	0.190	0.145
800	0.300	0.225	0.205	0.155
1000	0.325	0.245	0.225	0.170
1200	0.360	0.270	0.245	0.185
1600	0.400	0.295	0.270	0.200
2000	0.445	0.325	0.300	0.220

Table No . 5 Capacitance of Cable (µf/Km)

Table No. 6 Current Rating of TROPOTHEN-S Single Core 66 kV cable

Cross -	Single Point Bonding / Cross Bonding										
area of		Trefoil F o	rmation			Flat For	mation				
conductor	In Gr	ound	In A	Air	In Gro	ound	In Air				
sq mm	Aluminium Amp	Copper Amp	Aluminium Amp Copper Amp		Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp			
95	194	250	271	349	202	261	295	380			
120	221	383	312	401	230	296	341	438			
150	246	316	352	452	257	331	385	496			
185	277	354	402	515	290	372	440	566			
240	319	407	471	602	335	429	519	666			
300	358	455	537	685	377	483	594	762			
400	408	513	624	789	431	548	692	882			
500	462	576	722	904	491	620	806	1021			
630	523	644	835	1033	560	701	938	1179			
800	585	708	953	1161	632	781	1080	1341			
1000	686	816	1111	1372	723	905	1264	1592			
1200	722	871	1235	1503	790	977	1416	17 63			
1600	815	965	1434	1716	907	1108	1669	2055			
2000	892	1038	1613	1897	1008	1216	1904	2317			

Cross -				Both End	Bonding			
area of		Trefoil F	ormation			Flat F c	ormation	
conductor	In Gro	und	ln /	۹ir	In Gro	und	In	Air
sq mm	Aluminium Amp	Copper Amp	Aluminium Amp Copper Amp		Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp
95	191	242	267	341	189	234	284	357
120	215	272	307	390	211	258	324	404
150	239	301	345	437	231	281	362	449
185	267	334	391	494	255	305	408	501
240	305	378	456	571	284	335	469	570
300	339	417	516	642	309	359	524	629
400	380	461	593	728	337	384	591	697
500	424	507	678	821	365	407	662	767
630	471	554	772	920	391	429	737	837
800	516	595	866	1013	415	447	806	900
1000	554	631	961	1115	437	465	884	976
1200	587	660	1048	1198	45 3	477	946	1032
1600	639	704	1176	1317	474	493	1030	1105
2000	678	736	1285	1415	490	505	1101	1166

Note : The above current ratingscorrespond to a metallic sheath/screen short circuit current capability of 31.5 kA For one second duration. For any variation from this value of short circuit current and duration, kindly refer to us.

Table No . 7 Current Rating of TROPOTHEN-S Single Core 110/132 kV Cable

Cross -	Single Point Bondin g / Cross Bonding										
area of		Trefoil F o	rmation		FI at Formation						
conductor	In Gr	ound	In A	Air	In Gro	und	In A	Air			
sqmm	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp Copper Amp		Aluminium Amp	Copper Amp			
185	277	354	398	510	289	371	429	551			
240	319	407	467	598	335	429	505	649			
300	358	456	533	680	377	483	578	742			
400	408	514	618	783	431	548	673	859			
500	463	577	715	898	491	620	783	992			
630	523	646	826	1027	560	701	910	1145			
800	586	712	943	1155	632	782	1046	1302			
1000	666	817	1098	1362	723	905	1223	1544			
1200	721	873	1219	1492	789	977	1368	1708			
16 00	816	969	1417	1707	906	1108	1612	1992			
2000	893	1043	1595	1890	1007	1217	1838	2247			

Cross													
Sectional				Both End E	Bonding								
area of		TrefoilF o	rmation			Flat Fo	rmation						
conductor sq mm	In Gro	und	In A	Air	In Gro	und	In A	Air					
	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	CopperAmp					
185	268	336	390	494	256	308	403	499					
240	306	381	455	574	286	338	465	570					
300	341	421	516	646	312	363	521	632					
400	383	466	593	735	341	389	591	705					
500	428	513	679	830	- 369	414	664	778					
630	475	561	775	933	396	436	741	853					
800	522	605	871	1030	420	454	815	920					
1000	559	639	970	1138	443	473	897	1003					
1200	593	668	1057	1222	459	485	961	1060					
1600	645	713	1190	1347	480	500	1050	1137					
2000	685	746	1303	1449	496	512	1123	1200					

Note : The above current ratingscorrespond to a metallic sheath/screen short circuit current capability of 31.5 kA For one second duration. For any variation from this value of short circuit current and duration, kindly refer to us.

Table No. 8 Current Rating of TROPOTHEN-S Single Core 220 kV Cable

Cross -		Single Point Bonding / Cross Bonding												
area of		Trefoil Fo	rmation		Flat Formation									
conductor	In Gr	ound	In A	Air	In Gr	ound	In A	Air						
sq mm	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp						
400	406	513	608	771	430	546	651	831						
500	461	576	703	885	490	619	756	960						
630	522	645	811	1212	558	699	878	1106						
800	585	712	927	1141	630	780	1009	1258						
1000	664	815	1077	1342	720	902	1178	1490						
1200	718	870	11 95	1470	785	973	1316	1647						
1600	809	961	1386	1678	899	1101	1546	1916						
2000	869	1010	1544	1833	990	1191	1756	2147						

Cross -		Both End Bonding												
area of		Trefoil F o	ormation			Flat Fo	rmation							
conductor	In Gro	und	In A	Air	In Gro	und	۱n ،	Air						
sq mm	Aluminium Amp	Copper Amp	Aluminium Amp	Copper Amp	Aluminium Amp	Aluminium Copper Amp Amp		Copper Amp						
400	384	469	589	734	344	394	585	706						
500	429	518	674	831	373	419	660	784						
630	478	566	770	935	400	442	740	862						
800	525	612	869	1038	425	461	818	935						
1000	56 2	646	971	1152	448	480	904	1024						
1200	595	674	1059	1237	465	493	971	1085						
1600	643	713	1188	1358	493	516	1071	1174						
2000	670	728	1286	1440	537	561	1186	1288						

Note : The above current ratingscorrespond to a metallic sheath/screen short circuit current capability of 31.5 kA For one second duration. For any variation from this value of short circuit current and duration, kindly refer to us.

Table No.9 Rating factors for variation in ambient air temperature:

Air temperatur e °C	15	20	25	30	35	40	45	50	55	60
Conductor Temp 90 °C Rating Factors	1.25	1.20	1.16	1.11	1.05	1.00	0.94	0.88	0.82	0.76

Table No.10 Rating factors for variation in ground temperature :

15	20	25	30	35	40	45	50
1.12	1.08	1.04	1.00	0.96	0.91	0.87	0.82
			1999				
	15 1.12	15 20 1.12 1.08	15 20 25 1.12 1.08 1.04	15 20 25 30 1.12 1.08 1.04 1.00	15 20 25 30 35 1.12 1.08 1.04 1.00 0.96	15 20 25 30 35 40 1.12 1.08 1.04 1.00 0.96 0.91	15 20 25 30 35 40 45 1.12 1.08 1.04 1.00 0.96 0.91 0.87

Table No. 11 Rating factors for grouping of single core cable laid direct in ground in horizontal formation

Distance between centres of circuits		Number of circuits in group								
mm	1	2	3	4	5	6	7	8	9	
100	1	0.76	0.67	0.59	0.55	0.51	0.49	0.47	0.46	
200	1	0.81	0.71	0.65	0.61	0.58	0.56	0.53	0.52	
400	1	0.85	0.77	0.72	0.69	0.66	0.64	0.63	0.62	
600	1	0.88	0.81	0.77	0.74	0.72	0.71	0.70	0.69	
800	1	0.90	0.84	0.81	0.79	0.77	0.76	0.75	0.75	
2000	1	0.96	0.93	0.92	0.91	0.91	0.91	0.90	0.90	

Table No.12 Rating factor for thermal resistivity of soil

Soil thermal resistivity Deg.Ccm/Watt	70	100	120	150	200	250	300
Rating factor	1.36	1.19	1.11	1.00	0.88	0.78	0.73

Table No.13 Rating factor for depth of laying

Depth of laying cm	90	100	120	150	160	170	180	190	200
Rating factor	1.06	1.05	1.03	1.00	0.99	0.99	0.98	0.98	0.97

Table No. 14 Rating factor for phase spacing in flat formation

Phase Spacing (S)	D	D+70	D+200	D+250	D+300	D+350	D+400
cm							
Rating factor	0.93	1.00	1.03	1.05	1.07	1.08	1.10

Note : D is the overall diameter of the cable